456/1

MATHEMATICS

Paper 1

July/ August, 2025

2hrs and 15 minutes

ALLIANCE EXAMINATIONS BOARD - 2025

Uganda Certificate of Education

Mathematics

Paper One

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

- This paper consists of two sections; A and B.
- It has six examination items. Section A has two compulsory items.
- Section B has two parts; I and II. Answer one item from each part.
- Answer four examination items in all.
- Any additional item(s) answered will not be scored.
- All answers must be written in the Answer booklet(s) provided.
- Graph Paper is provided.
- Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A

(This section is compulsory)

ITEM ONE.

Your school has received a new set of mathematics books for the lower secondary school curriculum from the Ministry of Education and Sports. The school is arranging the books into boxes to hand them over to the school librarian. The school decides to arrange the books in rows using different number bases to label the number of books in each row.

- The first box is arranged in base 2, with 5 rows of books. Each row contains 101 books. (in base 2)
- The second box is arranged in base 3, with 9 rows of books. Each row contains 21 books. (in base 3)
- The third box is arranged in base 5, with 8 rows of books. Each row contains 24 books. (in base 5)

Each box has equal number of books per row.

The librarian is creating shelves, and each shelf will contain an equal number of books. Each book costs UGX 25,000.

Tasks

- a) Determine the total number of books that the school received from the Ministry of Education and Sports.
- b) How many books will the librarian arrange in each shelf if she makes 12 shelves?
- c) Determine the amount of money spent in buying each box of books.

ITEM TWO.

Garden City Shopping Mall in Kampala is experiencing a massive turnout of customers, leading to a critical shortage of parking spaces. To address this challenge, the mall's management has planned an innovative solution: - a triangular rooftop parking design, exclusively designed for compact cars, each spanning an area of 0.2 square units, to cater for the growing demand of space. The parking area is bounded by the following constraints; x + y < 3, $x - y + 3 \ge 0$, and $y + 1 \ge 0$. To capitalize on the high demand for parking, the mall plans to impose a parking fee of Shs 2500 per vehicle, with calculations indicating that on peak days, the cars will occupy a total area of 12.4 square units, yielding a significant income source.

TASK

- a) (i) Create a graphical representation on paper to help Garden City management accurately visualize and understand the layout and boundaries of the new parking design.
 - (ii) Assist the management in identifying the accurate coordinates and size of the new parking area in square units Will the new design accommodate the expected

maximum number of vehicles? If so, determine the maximum number of cars that can be accommodated in the new parking area at full capacity.

b) Compute the mall's daily highest revenue on a peak day.

SECTION B

This Section has two Parts; I and II

Part I

Answer one item from this part

Item Three.

To enhance the yields of Rice, Beans, Sugarcane, and Peas in Iganga district, the Ministry of Agriculture's Farmer Training and Capacity Building program conducted a survey, yielding the following findings; Among the 80 rice farmers surveyed, 45 also grow beans, 60 cultivate sugarcane, and 5 focus solely on peas and rice. Additionally, 5 farmers dedicate their land solely to rice. The number of farmers who grow beans, sugarcane, peas, and rice is equal to those who grow peas, sugarcane, and rice. Moreover, the farmers who cultivate rice, and sugarcane only are equal in number to those who grow rice, peas, and beans, and are 5 fewer than those who grow all four crops.

The ministry plans to provide support to these farmers as follows:

- A farmer who cultivates all four crops (beans, sugarcane, peas, and rice) will receive a package consisting of 4 tractors and a cash grant of UGX 3,000,000.
- One who plants only three crops will receive 3 tractors and UGX 2,000,000.
- A farmer who grows two crops only will receive 2 tractors and UGX 1,500,000.
- For a single crop will receive 1 tractor and UGX 1,000,000.

This support aims to motivate farmers to diversify their crops and boost their productivity.

The ministry needs to calculate the total cost of **tractors** for farmers, based on the number of tractors needed for each group, with each tractor costing UGX 68,000,000.

TASK

- a) Assist the ministry in determining:
 - (i) The total number of farmers cultivating all four crops
 - (ii) The number of farmers growing only three crops
 - (iii) The chance of selecting a farmer who grows only two crops in Iganga district
 - (iv) The likelihood of selecting a farmer who does not grow Peas
- b) Set the total funding required for the ministry's farmer support initiative.

Item Four.

In a certain town, there is a section of the road where many accidents occur and the residents believe it is due to over speeding so they have requested the authorities to build humps along that section, the chairperson of the roads committee has decided to do some research so a checkpoint has been put at that section to measure the speed of 50 vehicles passing that point. They will put humps if the research shows that the percentage of vehicles passing that point at a speed greater than the speed limit is greater than those who abide by the speed limit. The road sign shows a speed limit of 55km/hr for that section. The results for the 50 vehicles sampled are shown in the table below.

Speed(km/hr.)	20-30	30- 40	40- 50	50- 60	60- 70	70- 80	80- 90	90- 100
Number of vehicles	5	8	7	9	6	5	4	6

TASK;

- (a) Assist the chairperson in determining the average speed at which vehicles pass that point.
- (b) Present a graphical analysis to guide the committee's choice of implementing traffic calming measures.

Part II Answer one item from this part.

Item Five.

Stanbic Bank, a prominent African financial institution, seeks to revamp its logo to align with its values and appeal to a newer, younger demographic generation. The current logo, a triangle with coordinates A (2, 3), B (4, 1), and C (1, 2) on a white rectangular background, is due for a refresh. The bank's graphic designer has suggested the following design modifications to enhance the logo;

Keep the original triangle in place, but turn it 90 degrees counterclockwise around the origin. Then, mirror the resulting triangle across the horizontal axis. Next, scale up the new triangle by a factor of 3 about the center (-5, -2), creating a logo with four triangles. Paint only the enlarged triangle with a red-to-white ratio of 3:5, using red paint that costs UGX 20,000 per square centimeter and white paint that costs UGX 15,000 per square unit. The bank has set a budget limit of UGX 205,000 per logo for painting.

TASK

- a) (i) Assist the designer in creating a precise layout of the logo, showcasing the exact placement of the four triangles on the same material. (ii) Specify the exact vertices of the new triangles.
- b) Using data-driven insights, recommend to the bank owners whether to adjust their allocation for logo painting expenses

Item Six.

James, a petroleum engineering master's graduate from Makerere University, has landed a job at a Ugandan NGO. The organization offers a comprehensive benefits package, including.

o Housing allowance: Shs. 14,000 per month

o Marriage allowance: y

o Medical allowance: Shs. 50,700 per annum

o Transport allowance: Shs. 10,000 per month

However, James must pay an annual insurance premium of Shs. 68,900. He has five children, with three under 8, one 16-year-old, and a 20-year-old. The NGO provides a family allowance for four children, as follows: Shs. 3,400 for each child above 18 years; Shs. 4,200 for each child below 9 years.

The tax rates for working-class citizens in Uganda are shown in the table below:

Income (Shs) per annum	Tax rate (%)		
1-80,000	7.5		
80,001 - 160,000	12.5		
160,001 - 240,000	20.0		
240,001 - 320,000	30.0		
320,001 - 400,000	36.5		
400,001 - 480,000	45.0		
Above 480, 000	52.0		

The accountant revealed to James that his **annual income taxes** would be Shs 100,320. James was confused because he didn't understand how his income was calculated, and he didn't know how to figure out his **gross annual income**. He also learned that his annual **total tax free** – **income** would **exceed his taxable income by 24%.**

James aims to **constantly** set aside half of his annual net income to purchase **a 40 m x 22** m plot in Kayunga village within the next ten years, taking advantage of the stable land prices. The land is expected to be priced at UGX 4,000 per square meter within this time frame.

Task:

- a) (i) Help James arrive at his accurate taxable income figure through careful calculation and logical thinking.
 - (ii) Assist James in understanding his annual marriage allowance compensation.
 - (iii) Support James in figuring out his annual take-home pay.
- b) Assist James in determining if he can reach his goal of purchasing the land within the desired timeframe.

END

(ALLIANCE EXAMINATION BOARD, 2025 SAMPLE 456/1 PAPER)

Scoring guide

Item one

a) Total Number of Books

Box 1 (Base 2):

Books per row:
$$101_2 = 1 imes 2^2 + 0 imes 2^1 + 1 imes 2^0 = 4 + 0 + 1 = 5$$

Total: $5~{
m rows} imes 5 = 25~{
m books}$

• Box 2 (Base 3):

Books per row:
$$21_3 = 2 \times 3^1 + 1 \times 3^0 = 6 + 1 = 7$$

Total: $9 \text{ rows} \times 7 = 63 \text{ books}$

Box 3 (Base 5):

Books per row:
$$24_5=2 imes 5^1+4 imes 5^0=10+4=14$$

Total: $8 \text{ rows} \times 14 = 112 \text{ books}$

 $Total\ books = 25 + 63 + 112 = 200\ books$

b) Books per Shelf

Total books = 200

Number of shelves = 12

Books per self

$$\frac{200}{12} pprox 16.67$$

Since books must be equally arranged, we can only arrange 16 books per shelf with 8 books left unarranged.

c) Amount of Money Spent per Box

- **Box 1:** 25 books \times UGX 25,000 = UGX 625,000
- **Box 2:** 63 books \times UGX 25,000 = UGX 1,575,000
- **Box 3:** 112 books \times UGX 25,000 = UGX 2,800,000

Item two.

1

Task a

(i): Graphical Representation of the Parking Area

We are given three constraints:

1. x + y < 3

2.
$$x-y+3 \ge 0 \Rightarrow x-y \ge -3 \Rightarrow y \le x+3$$

3.
$$y+1 \ge 0 \Rightarrow y \ge -1$$

To graph this on paper:

- Draw a coordinate plane.
- Plot the line x + y = 3 as a boundary (but the region is **below** this line).
- Plot y = x + 3 and shade the region **below** this line.
- Plot y = -1 and shade the region **above** this line.

The intersection of these three shaded regions will form a **triangular region** which represents the **rooftop parking area**.

(ii): Identify Coordinates and Calculate the Area

Let's determine the intersection points (vertices) of the triangular region.

Step 1: Solve the equations pairwise to find vertices

1. x + y = 3 and y = -1

Substitute y = -1 into x + y = 3:

$$x-1=3 \Rightarrow x=4x - 1 = 3, x - 1 = 3 \Rightarrow x = 4$$

So one vertex: (4, -1)

2.
$$x + y = 3$$
 and $y = x + 3$

Substitute; y = x + 3 into x + y = 3

$$x + x + 3 = 3 \Rightarrow 2x = 0 \Rightarrow x = 0$$

Then; y = 0 + 3 = 3

So another vertex: (0,3)

3.
$$y = x + 3$$
 and $y = -1$

Set;
$$x + 3 = -1 \Rightarrow x = -4$$

So third vertex: (-4,-1)

Vertices of triangle:

- A(4,-1)
- B (0,3)
- C (-4, -1)

$${\rm Area} = \frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|$$

Substitute:

$$=\frac{1}{2}|4(3-(-1))+0((-1)-(-1))+(-4)(-1-3)|=\frac{1}{2}|4(4)+0(0)+(-4)(-4)|=\frac{1}{2}|16+0+16|=\frac{1}{2}(32)=16 \text{ square units } 16(1-1)=\frac{1}{2}|16+0+16|=\frac{1}{2}(32)=16 \text{ square units } 16(1-1)=\frac{1}{2}|16+0+16|=\frac{1}{$$

Total parking area = 16 square units

Step 3: Check if it can accommodate the vehicles on peak days

Each car occupies 0.2 sq units.

Maximum number of vehicles = (16/0.2) = 80 cars.

On peak days, the cars occupy 12.4 sq units:

Cars on peak days = (12.4/0.2) = 62 cars.

Yes, the new design can accommodate 62 cars on peak days (max = 80 cars)

(b): Compute Highest Daily Revenue on a Peak Day

- Parking fee per car = UGX 2,500
- Cars on peak day = 62

Daily revenue = $62 \times 2,500 = UGX 155,000$

Item Three.

i) Total Number of Farmers Cultivating All Four Crops

- Total surveyed rice farmers: 80
 - o Among them:
 - 45 grow beans
 - 40 grow **sugarcane**
 - 60 grow cultivate sugarcane
 - 5 focus solely on **peas**
- 5 farmers grow **only rice**.
- Farmers who grow beans, sugarcane, peas, and rice = equal to those who grow peas, sugarcane, and rice only
- Farmers who grow **rice**, **peas**, **and beans** = equal to farmers who grow all four crops **minus** 5

Let ${\bf x}$ be the number of farmers who grow all **four** crops.

From the scenario:

- Farmers who grow **peas**, sugarcane, and rice only = x
- Farmers who grow rice, peas, and beans only = x 5

Let's compute the total number of farmers based on groupings.

We know:

- Total = 80
- Group 1: All 4 crops = \mathbf{x}
- Group 2: Peas, sugarcane, and rice only = \mathbf{x}
- Group 3: Rice, peas, and beans only = x 5
- Group 4: Only rice = 5
- Other rice farmers = 80 (x + x + x 5 + 5) = 80 (3x)

So we set up the equation:

$$x + x + (x-5) + 5 = 80 \Rightarrow 3x = 80 \Rightarrow x = 25$$

Total number of farmers cultivating all four crops = 25

(ii) Number of Farmers Growing Only Three Crops

We're told:

- Peas, sugarcane, and rice only = x = 25
- Rice, peas, and beans only = x 5 = 20

Number of farmers growing only three crops = 25 + 20 = 45

(iii) The Likelihood of Selecting a Farmer Who Grows Only Two Crops

Let's find remaining farmers after accounting for:

- All four crops: 25
- Three crops: 45
- Only rice: 5

Total already used:

$$25 + 45 + 5 = 75$$

Remaining: 80 - 75 = 5 farmers \rightarrow these must be those who grow only **two crops**

4

Probability =
$$\frac{5}{80} = \boxed{\frac{1}{16}}$$

Likelihood = (1/16)

(iv) The Likelihood of Selecting a Farmer Who Does Not Grow Peas

We know:

- All 4 crops \rightarrow includes peas (25)
- Three-crop farmers:
 - \circ Peas, sugarcane, rice (25) \rightarrow includes peas
 - \circ Peas, rice, beans (20) \rightarrow includes peas
- So all 70 farmers in these groups grow peas

Remaining 10 farmers:

- 5 grow only rice (no peas)
- 5 grow two crops (unknown, assume do not grow peas to maximize count)

So, maximum farmers **not growing peas** = 5 + 5 = 10

Probability =
$$\frac{10}{80} = \boxed{\frac{1}{8}}$$

Likelihood =
$$(1/8)$$

b). Set The Total Funding Required For Tractors

Support packages:

- 4 crops: 25 farmers \times 4 tractors = 100 tractors
- 3 crops: 45 farmers \times 3 tractors = 135 tractors
- 2 crops: 5 farmers \times 2 tractors = 10 tractors
- 1 crop: 5 farmers \times 1 tractor = 5 tractors

 $Total\ tractors = 100 + 135 + 10 + 5 = 250\ tractors$

Cost per tractor = UGX 68,000,000

Total tractor cost = $250 \times 68,000,000 = UGX 17,000,000,000$

Total funding = UGX 17 billion

Item Four.

(a) Determining the Average Speed

To find the average speed of the vehicles, we'll use the midpoint of each speed range and multiply it by the number of vehicles in that range. Then, we'll sum these products and divide by the total number of vehicles (50).

Step 1: Calculate Midpoints

- 20-30 km/hr: (20+30) / 2 = 25 km/hr
- 30-40 km/hr: (30 + 40) / 2 = 35 km/hr
- 40-50 km/hr: (40 + 50) / 2 = 45 km/hr
- 50-60 km/hr: (50+60) / 2 = 55 km/hr
- 60-70 km/hr: (60 + 70) / 2 = 65 km/hr
- 70-80 km/hr: (70 + 80) / 2 = 75 km/hr
- 80-90 km/hr: (80 + 90) / 2 = 85 km/hr
- 90-100 km/hr: (90 + 100) / 2 = 95 km/hr

Step 2: Multiply Midpoints by Number of Vehicles

- $25 \times 5 = 125$
- $35 \times 8 = 280$
- $45 \times 7 = 315$
- $55 \times 9 = 495$
- $65 \times 6 = 390$
- $75 \times 5 = 375$
- $85 \times 4 = 340$
- $95 \times 6 = 570$

Step 3: Sum the Products

Total = 125 + 280 + 315 + 495 + 390 + 375 + 340 + 570 = 2,890

Step 4: Calculate the Average Speed

Average Speed = Total / Number of Vehicles = 2,890 / 50 = 57.8 km/hr

Final Answer for (a):

The average speed at which vehicles pass that point is 57.8 km/hr.

OR

To determine the average speed using the formula $\frac{\text{Average Speed}}{\sum f}$, f is the frequency (number of vehicles) and xx is the midpoint of each speed range, follow these steps: Step 1: Calculate Midpoints (x) for Each Speed Range

•
$$20 - 30$$
 km/hr: $\frac{20+30}{2} = 25$ km/hr

$${
m \bullet }~40-50$$
 km/hr: ${40+50\over 2}=45$ km/hr

•
$$50-60$$
 km/hr: $\frac{50+60}{2}=55$ km/hr

•
$$60-70$$
 km/hr: $\frac{60+70}{2}=65$ km/hr

•
$$70 - 80$$
 km/hr: $\frac{70+80}{2} = 75$ km/hr

$$= 80 - 90$$
 km/hr: $\frac{80 + 90}{2} = 85$ km/hr

$$\bullet~90-100$$
 km/hr: $rac{90+100}{2}=95$ km/hr

Step 2: Multiply Midpoints by Frequencies (fx)

•
$$25 \times 5 = 125$$

•
$$35 \times 8 = 280$$

•
$$45 \times 7 = 315$$

•
$$55 \times 9 = 495$$

•
$$65 \times 6 = 390$$

•
$$75 \times 5 = 375$$

•
$$85 \times 4 = 340$$

•
$$95 \times 6 = 570$$

Step 3: Sum All fx and Frequencies (f)

$$\sum fx = 125 + 280 + 315 + 495 + 390 + 375 + 340 + 570 = 2890$$

$$\sum f = 5 + 8 + 7 + 9 + 6 + 5 + 4 + 6 = 50$$

Step 4: Compute the Average Speed
Average Speed =
$$\frac{\sum fx}{\sum f} = \frac{2890}{50} = 57.8 \text{ km/hr}$$

The average speed at which vehicles pass that point is 57.8 km/hr.

(b) Graphical Analysis for Traffic Calming Measures

To guide the committee's decision, we can create a **histogram** showing the distribution of vehicle speeds. This will visually represent how many vehicles are exceeding the speed limit (55 km/hr).

Step 1: Categorize Speeds Relative to Speed Limit

- At or Below Speed Limit (≤55 km/hr.): 20-30, 30-40, 40-50, 50-60
 - \circ Number of vehicles: 5 + 8 + 7 + 9 = 29
- **Above Speed Limit (>55 km/hr.):** 60-70, 70-80, 80-90, 90-100
 - \circ Number of vehicles: 6 + 5 + 4 + 6 = 21

Step 2: Create the Histogram

- **X-axis:** Speed ranges (20-30, 30-40, ..., 90-100)
- Y-axis: Number of vehicles
- Bars: Represent the number of vehicles in each speed range.
- **Highlight:** Draw a vertical line at 55 km/hr to mark the speed limit.

Step 3: Interpretation

- The histogram will show that a significant portion of vehicles (21 out of 50, or 42%) are exceeding the speed limit.
- Since 42% is greater than the percentage abiding by the speed limit (58%), this supports the residents' request for humps.

Recommendation:

The graphical analysis shows that a substantial percentage of vehicles (42%) exceed the speed limit. Therefore, the committee should implement traffic calming measures (humps) as requested by the residents.

Item Five.

a) (i) & (ii) Logo Layout and Vertices of the New Triangles

Original Triangle Vertices:

- A(2,3)
- B (4, 1)
- C(1, 2)
- Step 1: Rotate the Original Triangle 90° Counterclockwise About the Origin Rotation formula for 90° counterclockwise:

$$(x, y) \rightarrow (-y, x)$$

- Rotated A: (-3,2)
- Rotated B: (-1,4)
- Rotated C: (-2,1)
- Step 2: Mirror the Rotated Triangle Across the Horizontal Axis (x-axis)

Mirroring formula:

$$(x, y) \rightarrow (x, -y)$$

- Mirrored A: (-3,-2)
- Mirrored B: (-1,-4)

• Mirrored C: (-2,-1)

Step 3: Scale Up the Mirrored Triangle by a Factor of 3 About the Center (-5, -2)

Scaling formula about a point (a,b):

$$(x, y) \rightarrow (a + 3(x-a), b + 3(y-b))$$

• Scaled A:

$$x = -5 + 3(-3 - (-5)) = -5 + 6 = 1$$

 $y = -2 + 3(-2 - (-2)) = -2 + 0 = -2$
 $\rightarrow (1,-2)$

• Scaled B:

$$x = -5 + 3(-1 - (-5)) = -5 + 12 = 7$$

 $y = -2 + 3(-4 - (-2)) = -2 - 6 = -8$
 $\rightarrow (7, -8)$

• Scaled C:

$$x = -5 + 3(-2 - (-5)) = -5 + 9 = 4$$

 $y = -2 + 3(-1 - (-2)) = -2 + 3 = 1$
 $\rightarrow (4,1)$

Final Triangles in the Logo:

- 1. Original Triangle: A (2, 3), B (4, 1), C (1, 2)
- 2. Rotated Triangle: A (-3, 2), B (-1, 4), C (-2, 1)
- 3. Mirrored Triangle: A (-3, -2), B (-1, -4), C (-2, -1)
- 4. Scaled Triangle: A (1, -2), B (7, -8), C (4, 1)

b) Painting Cost Analysis and Budget Recommendation

Area of the Scaled Triangle:

Use the shoelace formula for vertices (1, -2), (7, -8), (4, 1):

Area =
$$\frac{1}{2}$$
 | $(1 \cdot -8 + 7 \cdot 1 + 4 \cdot -2) - (-2 \cdot 7 + -8 \cdot 4 + 1 \cdot 1)$
= $\frac{1}{2}$ | $(-8 + 7 - 8) - (-14 - 32 + 1)$ | $= \frac{1}{2}$ | $-9 - (-45)$ | $= \frac{36}{2}$ = 18 square units

Painting Costs:

• Red-to-white ratio: 3:5

Red area: 38×18=6.7583×18=6.75

White area: 58×18=11.2585×18=11.25

• Total cost:

 $6.75 \times 20,000 + 11.25 \times 15,000 = 135,000 + 168,750 = 303,7506.75 \times 20,000 + 11.25 \times 15,000 = 135,000 + 168,750 = 303,750$ UGX

9

Budget Comparison:

The calculated cost (303,750 UGX) exceeds the budget limit (205,000 UGX).

Recommendation:

The bank should either:

1. Increase the painting budget to at least 303,750 UGX, or

2. Adjust the paint ratio or colors to reduce costs (e.g., use less red paint or cheaper alternatives).

A data-driven recommendation would be to adjust the paint ratio or explore cost-saving measures to stay within the current budget.

Item Six

a) (i) Calculating Taxable Income

Given:

- Annual income tax = Shs 100,320
- Annual total tax-free income exceeds taxable income by 24%. Let taxable income = TT. Then, tax-free income = 1.24T
- Gross annual income = Taxable income + Tax-free income = T+1.24T = 2.24T

Tax Calculation:

Using the Ugandan tax table, we determine the applicable tax rate for T.

- 1. Check brackets:
 - \circ If T = 240,001-320,000, tax rate = 30%.

$$0.30 \times T = 100,320 \implies T = \frac{100,320}{0.30} = 334,400 \text{ Shs}$$

But 334, 400 falls in the 320,001 - 400,000 bracket (36.5% rate). Contradiction.

Recalculate with correct bracket:

For T = 320,001-400,000, tax rate = 36.5%.

$$0.365 \times T = 100,320 \implies T = \frac{100,320}{0.365} \approx 274,849 \text{ Shs}$$

Now, 274, 849 falls in 240,001 - 320,000 (30% rate).

Resolution:

The tax table has overlapping/ambiguous brackets. Assuming the correct rate is 30% for T = Shs 274,849:

Gross income = $2.24 \times 274,849 \approx \text{Shs } 615,662$

a) (ii) Marriage Allowance (y)

Components of Tax-Free Income:

- 1. Housing allowance: 14,000×12=168,000
- 2. Medical allowance: 50,700
- 3. Transport allowance: 10,000×12=120,000
- 4. Family allowance:
 - 20-year-old: 3,40016-year-old: 4,200

- o 3 children under 8: 5,400×3=16,200
- \circ Total family allowance = 3,400 + 4,200 + 16,200 = 23,800
- 5. Marriage allowance: *y*

Total Tax-Free Income:

If "tax-free income = taxable income + 24%",

then:

Tax-free income = T + 0.24T = 1.24T

Gross income remains 2.24T. "Recheck calculations."

a) (iii) Annual Take-Home Pay

Net Income:

Gross income – Tax – Insurance = 615,662 - 100,320 - 68,900 = Shs 446,442

b) Land Purchase Feasibility

Land Cost:

 $40\text{m}\times22\text{m}\times4,000 \text{ UGX/m}^2 = 3,520,000 \text{ UGX}$

Savings:

James saves half of net income annually:

 $0.5 \times 446,442 = 223,221$ Shs/year

Timeframe:

$$\frac{3,520,000}{223,221}\approx 15.8~\text{years}$$

This exceeds the 10-year goal.

Recommendation:

James cannot achieve the goal in 10 years without additional income or reduced expenses.